급성 허혈성 뇌졸중(AIS)의 정확한 진단과 치료에는 고감도 및 해상도의 영상 기술이 필요합니다. 안타깝게도 이러한 기술은 아직 현장에 부족합니다. 그러나 2024년 7월 4일 Small은 고정밀 이미징 요구 사항을 충족할 수 있는 CE-SWI(Contrast-Enhanced Susceptibility-Weighted Imaging) 기술의 개발을 보고했습니다. 이 기술은 Dextran(Fe3O4@Dextran NPs)으로 수정된 Fe3O4 나노입자를 사용하므로 9.4T에서 AIS의 고감도 및 해상도 이미징이 가능합니다.
유연성과 탄성이 결합된 탄성 소재는 자동차, 건설, 소비재 등 다양한 산업 분야에서 필수적입니다. 또한 미세 유체 공학, 소프트 로봇 공학, 웨어러블 및 의료 기기와 같은 신흥 분야에서 점점 더 매력적입니다. 그러나 충분한 기계적 강도를 갖는 것은 모든 응용 분야의 전제 조건입니다. 따라서 부드러움과 강함 사이의 겉보기에 모순되는 속성을 해결하는 것은 항상 영원한 추구였습니다.
은 나노입자(AgNP)는 우수한 안정성과 강화 특성으로 인해 표면 강화 라만 분광법(SERS)의 라만 산란을 향상시키는 강력한 시약으로 광범위하게 사용되어 왔습니다. Nano Convergence의 최근 간행물에서는 AgNP를 사용하여 SERS 기판을 현장에서 제조하는 보다 환경 친화적이고 효율적인 방법이 보고되었습니다.
강력한 항균 특성을 지닌 은 기반 소재의 사용은 오랫동안 인식되어 왔지만 잠재적인 독성에 대한 우려로 인해 대체적이고 안전하며 효과적인 항균 시스템이 필요하게 되었습니다. 이러한 배경에서 연구진은 식품 보존을 위해 아르기닌 변형 키토산(ACS) 복합 은 함유 MMT(AgNPs@MMT)를 사용하여 새로운 시너지 항균 시스템을 개발했습니다. 이 기사에서는 이 유망한 솔루션을 자세히 살펴봅니다.
나노기술과 섬유공학의 융합은 다양한 응용 분야에서 다기능 스마트 소재의 개발과 성능 향상으로 이어졌습니다. 최근 획기적인 발전 중 하나는 다중벽 탄소 나노튜브에 은나노입자를 고정하고 부직포에 적용하여 다기능 스마트 직물을 만드는 데 사용되는 AgNPs/CNT 스프레이 코팅 용액의 1단계 합성입니다.
나노입자는 생의학 및 임상 응용 분야에서 점점 더 많이 사용되고 있습니다. 그러나 생물학적 매체에서 단백질과의 비특이적 상호 작용은 임상 적용에 어려움을 야기했습니다. 이와 관련하여 금 나노입자(AuNP)는 독특한 광학적 및 전자적 특성으로 인해 상당한 주목을 받아 영상, 진단 및 치료에 중요한 응용 분야로 이어졌습니다. 이 기사에서는 AuNP의 표면 코팅이 단백질 코로나 형성에 미치는 영향과 생물학적 응용을 위한 콜로이드 나노물질 설계에 대한 연구 결과의 의미를 탐구할 것입니다.