TEM (Transmission Electron Microscopy)은 재료 과학 및 나노 기술과 같은 분야의 필수 연구 도구입니다. TEM을 처음 접하는 연구원에게는 기본 원칙과 운영을 이해하는 것이이 장비를 효율적으로 활용하는 데 중요합니다. TEM 테스트는 주로 요소 분포, 위상 조성, 결정 결함 등을 포함한 재료의 미세 구조 특성에 중점을 둡니다. 이러한 특성은 크기, 모양, 다른 상 입자의 분포, 결정 결함의 밀도 및 분포로서 현미경 수준에서 나타납니다. TEM을 통해 연구원들은 재료의 내부 구조에 대한 더 깊은 이해를 얻어 자신의 특성 및 잠재적 응용을 평가할 수 있습니다.
열전산의 원리는 주로 태양 복사의 입력 (190-3000nm로 농축 된 파장) 에너지와 주변 온도에 따라 창을 통한 흑체 에너지의 출력을 조정합니다. 열전산 물질은 온도가 변할 때 투명성, 흡광도 및 색상을 변화시킵니다. Thermochromic은 외부 에너지 또는 수동 작동없이 가시 광선 투과율을 유지하면서 근적외선 투과율을 조정하기위한 수동 설계 전략으로 사용될 수 있습니다. 따라서 Thermochromic Smart Windows는 간단한 구조와 광범위한 응용 전망으로 인해 에너지 절약 창을 구축하는 데있어 뜨거운 연구 주제가되었습니다.
소형 입자 알루미나 파우더는 고유 한 물리적 및 화학적 특성으로 인해 세라믹, 화학 공학, 전자 제품 및 기타 필드에 광범위한 응용 분야를 가지고 있습니다. 그러나, 실제 적용에서, 소형 알루미나 분말은 응집이 발생하기 쉽다. 이는 서로 부착되는 분말 입자의 현상을 지칭하고 다양한 요인으로 인해 저장, 운송 또는 사용 중에 더 큰 골재를 형성한다. 성능에 영향을 미칩니다. 응집 현상은 유동성이 떨어질 수 있고 분말의 분산 성을 감소시켜 제품 품질에 영향을 줄 수 있습니다.
입자 재 배열 및 밀도 화 : 액체 상결에서 액체 상 및 입자 재 배열의 생성은 밀도의 주요 단계입니다. 작은 입자는 큰 표면적과 표면 에너지를 가지고 있습니다. 액체 상이 생성 된 후, 고체상은 액체 상에 의해 습윤시키고 입자 사이의 간격으로 침윤된다. 액체상의 양이 충분한 경우, 고체 입자는 액체 상으로 완전히 둘러싸여 있고 부유 상태에 근사합니다. 액체상의 표면 장력 하에서, 그들은 위치의 변위 및 조정을 겪어 가장 컴팩트 한 배열을 달성 할 것이다. 이 단계에서 소결 신체의 밀도가 빠르게 증가합니다.
열처리는 3D 프린팅의 적용 프로세스의 핵심 단계입니다. 지금까지 3D 인쇄 공정이 사용되는 3D 프린팅 공정에 관계없이 파우더 청소, 어닐링, 포스트 경화, 지원되지 않음, 연마, 샌드 블라스트 및 색상과 같은 다양한 정도를 포함하는 몇 가지 방법이 포함됩니다. 열처리는 또한 3D 인쇄 부품의 적용 프로세스에서 중요한 단계이며, 예상 결과, 사용 된 재료 및 선호하는 기술에 따라 다양한 형태를 취할 수 있습니다.
주사 전자 현미경은 다양한 전자 생성 방식에 따라 열 전자 방출 유형 및 전계 방출 유형으로 나눌 수 있습니다. 열 전자 방출 유형에 사용되는 필라멘트는 주로 텅스텐 필라멘트 전자 현미경입니다. 필드 배출 유형 뜨거운 전계 방출과 냉장 필드 방출의 구별.